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INTRODUCTION

In this paper we consider different kinds of rational approximations.
In Theorem I we approximate reciprocals of certain entire functions by
reciprocals of exponential polynomials under the uniform norm on [0, +00).
We show by an example that the bound given in Theorem I is best possible.
In Theorem 2 we consider the question of approximating reciprocals of
certain entire functions by reciprocals of linear combinations of certain
entire functions of small growth on [0, +00). In Theorems 3-8 we consider
approximation on [0, 1]. In some of these theorems we connect the error of
the approximating function with the rate of growth of the function. These
results are the analog of the classical ones of S. N. Bernstein ([I, p. 114]).

DEFINITIONS AND NOTATIONS

Letj(z) = L;~o akzk be an entire function. As usual, we define the order p
and lower order fJ (0 ~ fJ ~ p ~ 00) off as

lim sup log+ log+ M(r) = p
r-"CO inf log r (3 (0 ~ (3 ~ p ~ (0).

If 0 < P < 00, then we define the type.,. and the lower type w as

I' sup log+ M(r)
r~~ inf rP

where M(r) = maxlzl_r I j(z)l.
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"-0 = "-0 _1 == inf 11_1 - _1_11 (1)
,n ,n j(x) PnEiln j(x) PnCx) £",,[0,"")'

Ro n = Ro n j(I) - inf II j(I ) - ~() II, (2)
• • X PnEiln X Pn X £",,[0.1]

where IIn denotes the class of all algebraic polynomials of degree at most n.
Throughout our work £ > 0 may be different on different occasions;

a1 , a2 , aa , ••• , b1 , b2 , ba , ... , C1 , C2 , Ca , ... , are suitable real constants.

THEOREM 1. Let j(z) = L:~o akzk, ao> 0, ak ?:: 0 (k ?:: 1), be an entire
function of order p = 2, type T and lower type w (1/25 ~ w ~ .,. < !Xl) or
order p (2 < P < !Xl), type'" and lower type w (0 < w ~ T < !Xl). Then it is
not possible to find exponential polynomials of the form L~~o bkek" (bk ?:: 0)
for which

(3)

Proof Let us assume that there exist L~=o bkek", bk ?:: 0, for which (3) is
valid. Then for a sequence of values of n

For every large n we can find an r such that

j(r) = exp(n2T/9pw).

Then, according to (4), we must have

n

L bkekr < exp(n2T/7pw).
k=O

First we consider the case p > 2, 0 < w ~ T < 00. That is,

O 1
"" f log+ M(r) I" log+ M(r)< w = 1m 10 """ 1m sup = T < !Xl.
r~OO rP 1'-+00 rtJ

For each £ > 0, we can find an ro = ro(£) such that for all r ?:: ro(£),

w(l - £) rP ~ log+ M(r) ~ T(l + €) rP
•

(4)

(5)

(6)

(7)
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Given any S > 1, we get from (7), f(rS) ~ {f(r)}aP(l-Elw/(!+ElT. Choose
SPw = 4T; then using (5) we get

f(r41/PTl/PW-ljp) ~ exp(4n2(1 - e)Tj9pw(I + e». (8)

On the other hand, we have by (6)

n nL b
k

exp(kr41jpTljpw-ljp) = L bk exp(kr - kr + kr41jpTljpw-l/p)
k~O k~O

(9)

From the assumption that f is of positive lower type w, we get for all large
r ~ r1(e) along with (5),

exp(n2Tj9pw) = f(r) ;;:: exp(rPw(I - e».

From (10), we obtain

From (9) and (11) we get

(10)

(11)

From (9) and (12), we get at x = rS,

(
-n2T ) ( n2T ) (-4n2(1 - e)T)

exp~ < exp -nrco - tpw - exp 9p(1 + e)w '

(13)

Clearly (13) contradicts (3), hence the result is proved. Similarly for p = 2
and w ~ 0.04, we get the result. Q.E.D.

The assumption w > 0.04 can be relaxed to w > 0, with a careful selection
of f(r) in terms of n.
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Remarks. (1) It is interesting to note that the bound in Theorem 4 is
essentially best possible. For example, let

00

f(t) = L (ekt/ek2).
k=O

This is an entire function of order p = 2, T = W = t. For this function
by the usual technique (cf. [3]), it is easy to show that

Hence our bound is best possible and we have thereby proved: There exist
exponential polynomials gn(x) = I::=o akekX for which

(2) There is no analog of Theorem 1 for entire functions of order
p = 2 and type T = O. For example, let

00

f(z) = 1 + I (ezk/(P2233 ... kk».
k=l

It is not hard to verify that this is an entire function of order p = 2 and
type.,. = O. For this function, using the methods of [3], it is easy to show that

This clearly contradicts Theorem 1.

(3) The following example suggests that the assumption p = 2, .,. > 0
is not sufficient for the conclusion of Theorem 1. Let

00

f(z) = L (eZ'Pk/e'Pk'),
k~O

o = Po < PI < P2 < ... < Pk < "',

lim (Pk+l/Pk) = 00.
k->oo

This is an entire function of order p = 2 and type.,. > O. For this function
we can show easily

. II I 1 \\l/'Pn
'11m sup • - -- = O.

n->oo I:~=o (e"'Pk/e'Pk ) f(x) Loo[O' oo)



RATIONAL APPROXIMATION

As usual,
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Now let

[ ( 2 ( )2] ll
n

+1eX :(: elln +1 I _ ~) log Pn+l .
Pn+l Pn

Then clearly

o s: 1
""" L~~o (eXllkjellk2)

On the other hand, for

eX > elln
+I [I - (~:I flog ( P;:!-ffn+I,

From (AI) and (A2) we get the required result.
There exist entire functions of infinite order whose reciprocals can be

approximated by reciprocals of exponential polynomials with an error
cnlogn (0 < C < 1). For example, let

This is an entire function of order p = 00. By the usual method, it is not hard
to show that

II
1 1 III/nlOgn

lim sup - -- < l.
n-H) L~=O 0kekX f(X)L",[O.ao)

Now we consider the question of approximating reciprocals of certain
entire functions by reciprocals of linear combinations of entire functions of
small growth.
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THEOREM 2. Let fez) = L~-o akz\ ao > 0, ak ~ 0 (k ~ 1), be any entire
function oforder p (1 ~ p < 00), type T and lower type w (0 < w ~ or < 00).
Let c/>(z) be any transcendental entire function with nonnegative coefficients
satisfying the assumption that

o < lim (log+ M",(r)/(log r)2) = e < 1,
r->oo

where M.,(r) = Max I c/>(z)l.
Iz!~r

(14)

where N = n(log n)(log log n).

Proof. Let us assume (14) is not valid; then for infinitely many n,

(15)

By assumption, fez) is of order p (1 ~ p < 00), type T and lower type w
(0 < w ~ T < 00), i.e.,

O 1
·, f log+ M(r) l' log+ M(r)< w = 1m In ~ 1m sup = T < 00.

T-+OO rO r..-+oo rO

From this we get, as earlier for any ex > 1, and for all r ~ r4(e),

For every large n ~ ft, we can find an r such that

f( )
[n(log n) log log n]T NT

r = exp 4 = exp -4- .. pw pw

At that point
n

gn(r) = L b,Jc/>(r)}k < exp(NT/3pw).
k=O

If (18) is not true, then

gnCr) ~ exp(NT/3pw).

It is easy to verify that (17) and (19) contradict (15); hence (18) is valid.
Choose wexO = 4T; then we get from (13) and (14)

J(rex) ~ exp(NT(1 - e)/(I + e)pw).

(16)

(17)

(18)

(19)

(20)
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On the other hand,
n

gn(ra) = L bk{cp(ra)}k.
k~O

By the hypothesis of the above theorem for all r > r6(E),

exp[8(1 - E){log(ra)}2] :s; cp(ra) :s; exp[8(l + E){log(ra)}2].

257

(21)

From this it is easy to deduce that

cp(ra) :s; {cp(r)}ll+d!U-El exp[[8(1 + E)][(lOg a)2 + 2 log r log a]]. (22)

From (21) and (22) we get

n

gn(ra) = L bk{cp(ra)}k
k=O

n
:s; L bk[cp(r)]U+E)!ll-E) exp[(log a)2 + 2(log a)(log r)]k

k=O

n

:s; exp[(log a)2 + 2(log a)(log r)]n L bk{cp(r)}ll+dk!U-d. (23)
k~O

We choose E so small that

n

L bk{cp(r)}ll+Elk!U-E) < exp(Nr/3pw)
k=O

(cf. (18». (24)

By assumption, f(z) is of positive lower type w; therefore we have for all
r ~ r6(E) along with (17),

exp(rpw(1 - E» :s; f(r) = exp(NT/4pw).

From this we get
(25)

Now by (23), (24), and (25) we get

gn(ra) :s; exp I~:-+ (log a) [(lOg a) + 2p-l log ( 4pw2~T_ E) )]!.
(26)

From (20) and (26), Ebeing very small, we get

(
-NT) ( -NT ) ( -NT(1 - E»)

exp --p;;;- < exp~ - L - exp pw(l + E)

1 1
:(; L~~o b,,{4>(ra)}k - f(x) ,
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This clearly contradicts (15); hence the theorem is proved.

Remarks. (1) There exist entire functions of infinite order, whose
reciprocals can be approximated by reciprocals of L~=o {¢>(x)}k(k !)-l on
[0, +00), with an error en (0 < e < 1). For example, let

00

fez) = L: ({¢>(z)}k/k!),
k~O

where
00

¢>(z) = 1 + L: (zi/(P2233 ••• ii».
i~l

Clearly fez) is an entire function of infinite order. We can show easily that

As usual for 0 ~ x ~ r,

o :< 1 __1_ <: f {¢>(r)}k (B)
"" L~=O ({¢>(x)}k/k!) f(x) '-': k~n+l k! . 1

For sufficiently large r, it is easy to see that

¢>(r) ,...., exp((log r)2/2(log log r».

Set

exp((log r)2/2 log log r) = n/ee,

where e > 1 and satisfies en > 2eeenee.
A simple manipulation based on (Bl ), (B2), and (B3) gives us

f [exp ( (log r)2 )]k (k!)-l ~ ~.
k~n+l 2 log log r e

On the other hand, for x ;?: r,

1 1
A.. k ~ f .L~~o({'f'(r)} /k!) _ (r) - en
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By assumption,
f(z) = exp[<p(z)];

hence

[ (
(log r)2 )]

f(r) '" exp exp 210g log r .

Therefore we obtain from (B3) and (B4)

Now the required result follows from (B4), (B5), and (B6).

(II) There exist entire functions of the form

00 {<p(Z)}k
f(z) = 1 + I 3uog3)lOglog34UOg4)lOglog4 ... kUogk)lOglOgk '

k~3

where
00

<p(z) = 1 + I (zije j2
).

j~l
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In this example f(z) fails to satisfy the assumptions of Theorem 2, because
p = 1 and'T' = O. But <p(z) satisfies the assumption of Theorem 2, since

lim (log Mir)j(log r)2) = t.
r-'OO

By using the technique of [3], it is easy to show that

. II 1 1 111/r/uOgnlloglogn 1
lim sup 1-- - -- :< -

11-.00 f(z) gn(z) L",[O,oo) ~ 4 .

Recently much attention has been paid (cf. [3-5]) to approximating
reciprocals of certain entire functions by reciprocals of polynomials under
the uniform norm on [0, +OC!). However, not much is known about the
corresponding question on [0, 1]; of course, all the upper bounds that are
valid for [0, +OC!) are valid for [0, 1], but we look here for better bounds.
We prove here the following.

THEOREM 3. Let f(z) = I:~~o akzk, aD > 0, ak ~ 0 (k ~ 1), be analytic
in a disc of radius q > 1. Then

lim sup [Ro,,,]!/n ~ Ijq.
1l.~X;

(27)
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Proof Since f is analytic, given any E > 0, such that q - E > I, we can
find an no = no(E), such that for all n ?: no(E), we have

From the definition of Ro.n , we have

00

Ro.n ~ I I Ok I 002
•

k~n+1

From (28) and (29), we get for all large n ?: no ,

(28)

(29)

00

Ro.n ~ a0
2 I t ak t ~ a02(q - Ern(q - E - I)-I. (30)

k=n+1

Since E is arbitrary, (27) follows from (30).

Remark. If q = 00, then limn~oo[Ro,n]l/n = 0.

THEOREM 4. Let f(x) be a continuous function (~ 0) defined on [0, I].
If there exist polynomials {Pn(x)}:~o such that

. II I I 1IIIn11m ----- -0
n->xo f(x) Pn(x) Loo[O,I] - ,

(31)

then f is the restriction to [0, 1] ofan entire function.

Proof The proof of this is very similar to the proof given for
[5, Theorem 3] except that here we consider the interval [0, I], whereas in [5]
we considered the positive real axis. Q,E.D.

THEOREM 5. Let fez) = L;~o akzk, Go > 0, ak ~ 0 (k ~ I), be an entire
function of order p (0 < p < etJ). Then

r n log n
I~->~UP log[l/Ro.n ] = p,

Proof As earlier,
00

Ro.n ~ L I a" I a0
2

•

k=n+1
(32)

Since f is an entire function of order p (0 < p < (0), for each E > 0 there
is an nl = nl(E) such that [2, p. 8] for all n ~ nI(E), ..

(33)
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From (32) and (33), we get

from which it is easy to infer, € being arbitrary,

lim sup (n log n!log(l!Ro,n)) < p.
n~OO

From (35), we have for all large n ~ nl€),

261

(34)

(35)

Since f(x) is entire, having nonnegative coefficients, we have for all large
n ~ n4,

O<x<1.

Now let us pick Pn* E lln which gives least error in the sense of (2); then

R _11_1 __1_11
O,n - f(x) Pn *(x) II Loo [O.I] •

A simple manipulation based on (36) gives us

(36)

O<x<1.
-P(x) * P(x)

(I!Ro,n) + f(x) < Pn (x) - f(x) < (I!Ro,n) - I(x)

From (37), it is easy to obtain that

II Pn* - III Loo[O.l] < (I!R C)4 _ C '
O.n 3

Let
En = inf III - Pn IlL [01] .

PnEIIn 0Cl '

Then from (38) and (39) we get

A simple calculation based on (40) gives us

From (41) we get

O<x<1.

(37)

(38)

(39)

(40)

(41)

. n logn. n log n
hmsup I (l!E):::;;; hmsup 1 (l!R ).n...", og n n...'" og O.n

(42)



262 A. R. REDDY

If f(z) is an entire function of order p (0 < p < (0), then for any finite
interval, it is known [6, Theorem 1] that

lim sup (n log nJlog(lJEn»= p.
n-->oo

From (35), (42), and (43) we get the required result.

(43)

Q.E.D.

THEOREM 6. Let f(z) = L:=o akzk, ao > 0, and ak ~ °(k ~ 1), be an
entire function oforder p (0 < p < (0), type T (0 < T < (0). Then

(44)

Proof Let qn(x; 1) E 7Tn denote the best Chebyshev approximation to f
in [0, 1], i.e.,

Further, let

for every n ~ 0;

then it is known [5, p. 181] that

X E [0, 1].

From this we get

(45)

Since f(z) is an entire function of order p (0 < p < (0) type T (0 < T < (0),

lim sup (njpe) EP/n = T4-p 1
n-')OCJ n

From (45) and (46) we obtain

(cf. [6, Theorem 3]). (46)

On the other hand, we get from (41) and (46),

lim sup (nJpe)[Ro.n]p/n ~ T4-p.
n-)OO

We have the required result, (44), from (47) and (48).

1 The interval considered in [6, 7] is [-], I].

(47)

(48)
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Remark. If fez) is of perfectly regular growth (p, r) (cf. [7, p. 45]), then
we can replace lim sup by lim in (44). This follows easily from (41) and (45)
of Theorem 6 along with (43) of [7].

THEOREM 7. Let fez) = L:=o akzk, ao> 0 and ak :);: 0 (k :);: 1), be any
entire function. Then for all large n,

log Ro•n ,....., log En .

The proof of this follows from (41) and (45). Q.E.D.

THEOREM 8. Let fez) = L:-o akzk, ao> 0, Gk :);: 0 (k :);: 1), be an entire
function satisfying the assumptions that

1 r log+ log+ M(r) A + 1
< I~->~UP log log r = < 00,

. log+ M(r)o < 11m sup (l ).1+1 = T! < 00.
r->oo og r

Then
nA +1

lim sup [1 l/R ]A
n->oo og O,n

The proof of this follows from (41) and (45) by using Lemma 7 and Theorem 7
of [6].
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